Moving Toward Adaptation

2021 IRWM Roundtable

SOME CONTEXT

Climate Change Stressors in California

Understood changes

- Increase of temperature
 - 4.4 5.8°F (2.4 3.2°C) by mid-century¹
- Change in precipitation pattern
 - +3.9%°F (+7%/°C) for daily precipitation above the 99% Prob.²
 - Intra-annual variability may increase substantially^{3,4}
- Sea level rise
 - Median: 0.9ft by mid-century⁵
 - H++: 2.7ft by mid-century⁵

Mishra et al (2012), Relationship between hourly extreme precipitation and local air temperature in the United States

¹California's Fourth Climate Change Assessment: Statewide Summary Report (2018)

²Fischer et al (2017), Observed heavy precipitation increase confirms theory and early models

³Dettinger et al (2016), Climate Change and the Delta

⁴Swain et al (2018), Increasing precipitation volatility in twenty-first-century California

⁵State of California Sea-Level Rise Guidance, 2018 Update

The Challenge: Climate Change Uncertainties

Sea Level Rise

Pierce et al (2018), Climate, Drought, and Sea Level Rise Scenarios for California's Fourth Climate Change Assessment

Precipitation and Temperature

Important Considerations Toward Adaptation

1. Institutional Anticipation

2. Adaptation Strategies

3. Innovation

INSTITUTIONAL ANTICIPATION

DWR Climate Action Plan

A Comprehensive Response to Climate Change

Phase I: Greenhouse Gas Emissions Reduction Plan

Phase II: Consistent, high quality climate change analysis across all DWR programs

Phase III: Vulnerability Assessment and Adaptation Plan

Downscaling or Top-Down Approach

Bottom Up or Decision-Scaling Approach

Select a Couple of General Circulation Model (GCM) Projections

Downscaling, Hydrologic Modeling

Operations and Planning Models

Conditional System
Performance
Projections

Adaptive Planning

Climate Model Ensemble

System Surface
Response
/Vulnerability
Assessment

Operations and Planning Models

Climate/
Weather
Generator or
Paleolithic Data

and an alternative and a second a second and and the second s 209 ccc 22 Landers Separt and the contract of the contra Monte, Strainstiff And Aderitation of the state of and a straight of the straight and destruction of the second Conservation state of the conservation of the and convergence and country to the second seco 2011 CALER JORGAN 2020 State

Climate Change Analysis

2018 Andrews Street, Assessment Andrews Street, Andrews Street

Alexa Child Andrian erior san satisfaide chinate SAP STORY ALC. 2023 CAR DRANG Astronomy of the state of the s

Today

Top-Down/Downscaling Analysis Bottom-up/Decision Scaling Analysis

From Planning to Implementation

From Planning to Implementation

ADAPTATION STRATEGIES

Adaptation

Adapted from UNESCO (2018), Climate Risk Informed Decision Analysis (CRIDA)

Source: Jose Luis Roca / AF

Source: Reuters

Source: DWR

- Each water sectors flood, water supply and ecosystem – are vulnerable to climate change
- Sectors vulnerabilities are often interconnected
- A need for multi-sector adaptation strategies

Multi-Sector Adaptation Strategies

Multi-Benefit Bypass **Improvements**

Forecast Inform Reservoir Operation

Flood-Managed Aquifer Recharge (MAR)

INNOVATION

Watershed Vulnerability and Adaptation Planning Studies

Merced River Basin Flood-MAR Reconnaissance Study

Tuolumne River Watershed Vulnerability
Assessment and Adaptive Planning Study

What?

Use Decision Scaling, applied in two phases:

- 1) Climate change vulnerability assessment of the water resources systems and
- 2) Adaptative planning evaluates the effectiveness of adaptation strategies

How?

Stress test watershed water supply, flood, and ecosystem performance under a range of climatic precipitation and temperature perturbations using:

 Paleo-climatic reconstructions of historic hydrology

An innovative stochastic weather generator

Why?

- Demonstrate application of watershed-scale integrated analytical toolset
- Improve understanding of climate change vulnerabilities, using risk-based reporting of results
- Demonstrate advantages of planning and managing across water sectors at the watershed scale
- Provide a proof-of-concept study, applying and testing Flood-MAR implementation concepts
- Improve understanding of the effects of atmospheric rivers connected to climate change

Weather Generator & Perturbations

Observed or historical time series of weather

- Dendrochronology Module
- Annual Module
- Seasonal Module
- Daily Module
- Precipitation change driven by temperature increase
- Investigating weather regimes changes

Many simulated time series of weather data

Cornell University

CONCLUSION

Path Toward Adaptation

- 1. Institution Anticipation: Recognize the need to act to what and when
- 2. Adaptation Strategies: Collaborate to form multiwater sector strategies
- 3. Innovation: Stay connected to the research community

Thank You

Romain Maendly
Romain.Maendly@water.ca.gov

