Evaluation of genetic Ne of Delta Smelt provides hope for recovery

Mandi Finger, Genomic Variation Lab Center for Coastal Ocean Issues and Delta Science Program Symposium March 29, 2016

Acknowledgements and Collaborators

- Scott Blankenship and Gregg Schumer
 - Project coordination, data collection and genotyping

Genomic Variation Laboratory

State and Federal Contractors Water Agency

Central question:

What is the (known) extent of genetic threats to Delta Smelt?

- Why do we care about genetic diversity?
 - Natural selection acts on genetic variation
 - Genetic variation allows adaptation to a changing environment

- Inbreeding and drift remove diversity
- Immigration or mutation add diversity

Genetic diversity and conservation

 Recognized by the IUCN as one of three forms of biodiversity deserving conservation

A large population reduced in size loses diversity

Population size can rebound more quickly than genetic diversity

Image: evolution.berkeley.edu

Effective population size (N_e)

- Allows us to predict loss of diversity using the relationship between forces that add genetic diversity (mutation), and forces that remove diversity (drift)
- N_e = size of an ideal population that loses heterozygosity (due to drift or inbreeding) at the same rate as the real population
- Ideal population (hypothetical)
 - Random mating, infinite population size, no migration, mutation or selection

Lowering N_e

• Departures from an ideal population lower the N_e of a **real** population

Life history

Demography

In other words...

 If an real population loses genetic diversity at the same rate as an ideal population of 100, the real population has an N_e of 100.

Even if there are 1,000 individuals in the real population

N_e/N

- N_e in real population typically far lower than N
 - Avg is 0.1
 - If N_e is 1,000, N is 10,000

 But relationship is uncertain and populationspecific

- Highly fecund species (fish, oysters, shrimp)
 typically have far lower N_e/N ratios
 - 10⁻³ 10⁻⁶ (Frankham 1995)

N_e and conservation

Populations with $N_e > 1,000$ will maintain nearly 100% of genetic variation over 10 generations

However...

" (N_e) is arguably both the most important and the most difficult to evaluate directly" (Waples 1989)

N_e Estimators

- N_{eLD}
 - Measured with single sample
- N_{eV}
 - Measured between two time points
 - Can decline and recover more rapidly
- In a large, stable population values will be similar

Methods

- Genotyped 2,628 samples from surveys (FMWT, SKT, EWS, GES) from 2011-2014
- 12 microsatellites (Fisch et al. 2009)
- Estimated N_{eLD} and N_{eV} for each cohort

Results: N_{eLD}

- Upper 95% confidence intervals all ∞
- Reporting lower 95% CI

Results: N_{eV}

- N_{eV}
 - Some lower 95% CI values below 1,000 threshold

Interpretation

- Delta Smelt are not immediately threatened by reduced evolutionary potential
 - But they are near the threshold

- Genetic factors are probably not the main reason for Delta Smelt decline
 - Environmental and demographic threats are far greater

Interpretation

- Delta Smelt are recoverable!
 - Don't get the the point of no return
- Another piece of the puzzle

How **not** to use this information

- Short-term data set!
 - N_e and diversity were likely **far greater** before collapse
- Do not use N_e to inform water operations in real time
 - Requires tissue samples and genetic analysis

Lag time between demographic changes and changes in N_e

Suggestions

- Focus on maximizing abundance
 - Will allow maintenance and prevent further loss of diversity
- Alternative ways to monitor Delta Smelt
 - Smeltcam
 - eDNA
- Coordinate with other data sets otoliths, gene expression, contaminants, biomarkers

Future work in our lab

- More powerful genetic monitoring and longterm data set
 - Genomic data
 - Use historic samples (at least from the 1990's)
 - Determine genetic basis for residency, sex marker
- Longfin smelt coastwide structure
 - Stay tuned!

Genomic Variation Laboratory

Questions?