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Outline

e Groundwater fundamentals
— California groundwater occurrence & general background

— Overdraft & negative consequences
* Non-sustainable storage depletion
e Subsidence
* Surface water & ecosystem effects
* Increased energy costs
* Bad water intrusion from aquitards and from depth
e Basin salt imbalance
* Seawater intrusion

— Sustainable yield

e Groundwater myths
— Pumping of “fossil water” is non-sustainable
— Groundwater storage depletion always takes a long time to recover
— Groundwater levels tell us how much groundwater storage is changing
— Quality of most groundwater is degraded
— Good quality groundwater today is likely to stay that way
— Potential myth: climate change will decrease groundwater recharge
e Case studies
— Coachella valley
— Yolo County
— Orange Co.



CA Water Use & Supply, CA Water Plan 2014
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Stippling in bars indicates depleted (irrecoverable)
water use (water consumed through evapotranspiration,
flowing to salf sinks like saline aquifers, or otherwise not
available as a source of supply).
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1 Detail of bar graph: For water years
2001-2010, recycled municipal water
varied from 0.2 to 0.7 MAF of the
water supply.




CA Water Use & Supply, CA Water Plan 2014
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Groundwater Use In 1,000’s of acre-feet

~43% of Californians rely on groundwater for
drinking water




Locations of leaking underground fuel tanks
(LUFTSs) and public wells in California

LUFT Sites Public Wells

20,000-35,000 PWS wells

UCRL-MI-133696 | UL7
Happel, Dooher & Beckenbach, 1999 Lawrence Livermore National Laboratory R -’



Density of private wells in California

' Private well density based on
' 1990 Census Block Group Data

(~450,000 Private Wells)
Wells per Acre

coooo
eoleolole)]
CoOWwWw—=0O
AOOO
leleole)
OO W=—

UCRL-MI-133696
Happel, Dooher & Beckenbach, 1999 Lawrence Livermore National Laboratory




Groundwater Occurrence
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Major Aquifers (http:/nationalatlas.gov/natlas/natlasstart.asp)
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Pores in unconsolidated B. Lava tubes and cooling
sedimentary deposits fractures in extrusive
igneous rock
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C. Caverns and other solution- D. Joints in flat-lying

enlarged openings in consolidated sedimentary
limestone . : rock

E. Joints and fault in F. Joints in metamorphic
folded consolidated and intrusive igneous
sedimentary rock rocks
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Caasi Range#

Figure 74. The Central Yalley is a large
structural troudh that has been parially filled by s r;“_“j:--' ‘;
rraring sedirents and cortinertal deposits. The gt e
aierra Mevada, which forms most of the eastern
boundary of the valley, is the edge of a huge
tited grarite block, The Coast Ranges, which
fanm most of the western boundary, consist, for
the most part, of folded and fauted marine rocks.

EXPLAMATION

Conbinental depo sits
Marine sediments

Crystalline rock

1 Bl

Fault—" rrows = how relative

direction of moveneant - Lrﬁr'_‘:.;;":;: i
Fage, R, 1555, Gedogy of the fresh ground water basin of
e Central Valley, Califomia, with edture maps and sscions:
L5, Geclogical Survey Prokssioral Paper 1404 -3 S4p.
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Figure 77. Diagrammatic gealogic sections
show that (&) the Zacramento Yalley contains
a relatively thin section of continental deposits,
whereas these deposits are very thick in the
=an Joaguin Valley, and (B) the marine rocks
and the lake and marsh deposits inthe San
Joaguin Yalley have minimal permeability.

EXPLAMATION
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rozk s and @onbdnental
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melamo rphic mocks

Fage, RW ., 1555, Gedlogy of the fresh ground-water basin of
e Central Walley, Caliomia, with exture maps and secions:
L5, Gedlogoal Survey Proessional Paper 1401 -G S4p.
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Alluvial Fan (near Bozeman, Montana)

http://geology.about.com/library/bl/images/blalluvfan.htm



Kings River Fan Aquifer System

o Stream-dominated alluvial fan
system (fluvial depositional
system);

 Located southeast of Fresno,
California;

e Study area located in medial
fan area.







San Joaquin Valley Groundwater (from Faunt, 2009)

Pre-
Development
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Figure AS. Continued. .



Groundwater and Surface Water

Reservoir

Evapotranspiration

AR

Phreatophytes

Municipal/
Industrial

e Supply

ell
-

Salinity Gradient

From CA Water Plan 2014



Sand, silt,
and clay

MIXED- AND SUSPENDED-LOAD .CHANN‘EII__ SYSTEM
CALVERT BLUFF FORMATION
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Kings River Alluvial Fan
Realization 5
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Cosumnes Alluvial Aquifer System
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Typical Subsurface Complexty, LLNL Site (Carle & Fogg, 1996)

Il debris flow
B floodplain
[ | levee
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Woodland Area Aquifer System
Network (Stephen Maples, HYD 273)

B Clay [ ] Sand
B Gravel



Davis Area Aquifer System Network
(Katie Markovich, HYD 273)

Figure 3. Cross-section oriented along the y-axis



Galloway &
Hobday 1983

Suspended-lood channelv . _nemw QA-2480



Groundwater
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Confined Aquifer Schematic (from Driscoll, 1986)

- Bedrock recharge zone

Potential energy in confined aquifer

Well ~—_

Lake

ft (u_nconfinéd a‘dulfe
Lﬁ@ me‘stony{ f_?;‘“"—:-

Sandstone (confined-aquifer) -~ -

Glacial

— .

. —

Figure 5.2, Groundwater exiéts in the underground in two major envirom‘nents: unconfined and confined.

Myth: Old (1,000’s of yrs) groundwater is fossil water

that is not replenished enough to support pumping. .
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Figure 76. Continental sediments
formthe Central Yalley aguifer
system. These sediments average «
2,400 feet inthickness but are

fmare than 9,000 feet thick inthe
Tulare Basin.
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Figure 98. The thickness of the Central Yalley

aguiter system that is saturated with freshwater ‘“'
is greatest in the San Joaguin Valley, where i
frestowater extends to a depth of morethan N 0 1 T
4,000 feet below land surface.
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San Joaquin Valley Groundwater (from Faunt, 2009)

Pre-
Development
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Subsidence area

Post-
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Figure AS. Continued. .



Groundwater Overdraft: Pumping more
groundwater than the system can sustain

Potential consequences:

 Non-sustainable storage depletion
e Subsidence

e Surface water & ecosystem effects
* Increased energy costs

e Bad water intrusion from aquitards and from
depth

e Basin salt imbalance
e Seawater intrusion



Groundwater Overdraft Trends,
Central Valley
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e studies the USGS is conducting to assess the
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Cumulative Groundwater Depletion in California’s Central Valley from USGS and GRACE
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http://mavensnotebook.com/2014/10/13/californias-drought-a-result-of-natural-hydrologic-variability-climate-change-or-both/

Figure TL-29 Spring 2010 Annual Change in Groundwater Storage for the
Tulare Lake Hydrologic Region

Tulare Lake Hydrologic Region
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Groundwater Overdraft: Pumping more
groundwater than the system can sustain

Potential consequences:

 Non-sustainable storage depletion
e Subsidence

e Surface water & ecosystem effects
* Increased energy costs

e Bad water intrusion from aquitards and from
depth

e Basin salt imbalance

e Seawater intrusion



Mining Ground Water SEUROERFIRAENRY California

1925
Approximate location of
maximum subsidence in the

United States identified by
Joe Poland (pictured)
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Figure TL-23 Depth to Groundwater Hydrograph and Vertical Land Surface Displacement at
UNAVCO GPS Site 304, near the City of Madera

Groundwater Levels Below Corcoran Clay (Mendota)

110
120
130
140

Depth to Water (feet)

Vertical Displacement (feet)

150

160

) S I— . .
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Source: USGS 2011 presentation on Central Valley subsidence. Land surface elevation data from UNAVCO Station 304; depth to water data
provided by Luhdorff and Scalmanini Consulting Engineers




Figure TL-18 Land Subsidence in the San Joaquin Valley — 1926 to 1970
(Adapted from Ireland, 1984)

San Francisco Bay
Hydrologic Region

Subsidence in Feet
1

o

o

o -

@ =

San Joaquin Valley
Study Area

o Hydrologic Regions

Central Coast
Hydrologic Region
E

San Joaquin River
Hydrologic Region

\
o

= )=

"ol

®

\

Tuljre Lake
Hydrolpgic Region

arc

St

South Lahontan
Hydrologic Region

South (‘oa§t
Hydrologic Region

3.{\

Land Subsidence (1926-70)

0 3o
1

1in = 32 miles

=
0 Miles @
i 2




Groundwater Overdraft: Pumping more
groundwater than the system can sustain

Potential consequences:

 Non-sustainable storage depletion
e Subsidence

e Surface water & ecosystem effects
* Increased energy costs

e Bad water intrusion from aquitards and from
depth

e Basin salt imbalance

e Seawater intrusion



From Alley et al. (1999)
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Figure 13. Effects of pumping from a hypothetical ground-water system that discharges to a stream. (Modified
from Heath, 1883.)
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Groundwater Overdraft: Pumping more
groundwater than the system can sustain

Potential consequences:

 Non-sustainable storage depletion
e Subsidence

e Surface water & ecosystem effects
* Increased energy costs

e Bad water intrusion from aquitards and from
depth

e Basin salt imbalance

e Seawater intrusion



Potential for Water Quality Degradation from Below is Clear and
Present, but Unaddressed

Figure 95. The thickness of the Central Valley
aguiter systern that is saturated with freshwater
is greatest inthe San Joaguin Valley, where
freshwater extends to a depth of more than
4,000 feet below land surface.
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Woodland Area Aquifer System
Network (Stephen Maples, HYD 273)

B Clay [ ] Sand
B Gravel



Groundwater Overdraft: Pumping more
groundwater than the system can sustain

Potential consequences:

 Non-sustainable storage depletion
e Subsidence

e Surface water & ecosystem effects
* Increased energy costs

e Bad water intrusion from aquitards and from
depth

e Basin salt imbalance
e Seawater intrusion



Figure TL-26 Spring 2010 Groundwater Elevation Contours for the Tulare Lake
Hydrologic Region

[This figure is for the Central Valley; it will be updated with figure for the Tulare Lake
Hydrologic Region]|

j- NORTH
Gy, LAHONTAN [ Hydrologic region
el boundary

QQ ~ V"\'\ﬂ Central Valley
) L .
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Direction of
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{ elevation (feet) =55
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Contour Development: Groundwater elevation contours ilustrate
warlations inthe regional grounduater occurrence and movement
Groundwater elevation cortours are generated using measure-
ments taken by the DWR, DWR Cooperators, and CASGEM
Monitonng Erdifies during the spring m enths of prim arily March
and April of the year shown. The contours are derived from
monitoring wells having a depth and screened interval that
intersects the middie fo upper portions of the local aguifer
systems, and generally characterize unconfined aguifer concitions
Groundwater elevations are referenced from mean seal level
using the National Geodetic Vertical Datum 1932 (NGVD 22) TULARE |
Regional Conditions: Accuracy of groundwater contours are LAKE
affected hy a number of wvariables, including the spacing and ’
distribution of nearby monitaring wells, monitoring well construc- -
tion, changes in aguiter condftions, land surface topography, and
interpolation methods. Groundwater elevation contours fllustrate
regional conditions and should be considered approximate. Local
groundater conditions will vary based on seasonal or shordterm
whanges in groundwater demand

cné'rrnu:u.g a
N, COAST \-\_\

Data Gaps: Areas within the grouncdwater basin not showing
regional groundwater elevation contolirs represent gaps in the
avallability of grounduwater |evel data nesded to generate regional
groundiwater occurrence and movement within these areas.

Sowrce: Department of Water Resources, CWP 2013

The danger of a
hydrologic
basin losing its
outlet....



San Joaquin Valley Groundwater (from Faunt, 2009)

Pre-
Development
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Groundwater Overdraft: Pumping more
groundwater than the system can sustain

Potential consequences:

 Non-sustainable storage depletion
e Subsidence

e Surface water & ecosystem effects
* Increased energy costs

e Bad water intrusion from aquitards and from
depth

e Basin salt imbalance

e Seawater intrusion






Groundwater
Quality Is
Degrading In Many
Systems,

But Most of the
Groundwater
Quality 1s Still Good



Age Distribution & Sustainability:
Groundwater Ages are Highly Mixed!

Water sample

Distribution of Ages

contaminated

Percent of Volume

Year of recharge

1700 1999

Year of Origin



This means that if we see contamination
In the groundwater today, and if that
contamination Is from a persistent, non-
point source, we can expect decades to
centuries of worsening groundwater
quality.
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Groundwater quality sustainability is one of
the major scientific and societal issues of our
time...

« Most fresh groundwater resources are 102 - 103 yr old, yet most
anthropogenic contaminants <50-60 yr old.

— Especially in western alluvial basins, Gulf Coast, Atlantic coastal
plain, etc.

— Not so much in shallow, glacio-fluvial outwash, moist climates?
» Groundwater ages (even from short screens) are generally highly mixed.

— Molecular ages typically range greatly (e.g., 10* - 102 or 103 yr)
within a single sample (Fogg et al., 1999; Tompson et al., 1999;
Weissmann et al., 2002; Bethke & Johnson, 2002).

— In other words, in many systems there is significant potential for
water quality to get much worse over the coming decades to
centuries, depending on contaminant sources.
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WATER RESOURCES RESEARCH, VOL. 42, W03S05, doi:10.1029/2005WR004372, 2006

Motivation of synthesis, with an example on groundwater
quality sustainability

Graham E. Fogg">’ and Eric M. LaBolle'
Received 29 June 2005; revised 20 October 2005; accepted 7 November 2005; published 14 March 2006.

[1] Synthesis of 1deas and theories from disparate disciplines is necessary for addressing
the major problems faced by society. The best motivation for broad, effective synthesis is
the “big idea” that 1s sufficiently important and inspiring to marshal the appropriate
collaborative efforts. Groundwater quality sustainability is posed as an example of one
such idea that would potentially unify research efforts in both the sciences and social
sciences toward a common, pressing objective.

Citation: Fogg, G. E., and E. M. LaBolle (2006), Motivation of synthesis, with an example on groundwater quality sustainability,
Water Resour. Res., 42, W03S05, doi:10.1029/2005WR004372.
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NITRATE SOURCES, GROUNDWATER QUALITY, AND
DRINKING WATER
IN THE TULARE LAKE BASIN

USDA National Water Meeting
May 23, 2012
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A Look at Davis, CA



City of Davis, CA Well Data, <135 m Depth

NO3 (as NO3) vs Time
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City of Davis Groundwater Levels, Intermediate-Depth Aquifer
Online plots from Elizabeth Case
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City of Davis Groundwater Levels, Deep Aquifer
Online plots from Elizabeth Case
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Static Elevation(ft)
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Case Study: Coachella Valley
Groundwater Systems:
Work with Harvey O. Banks
during 1987-96

76
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Elevation, in ft msl

Figure 12.
Hydrograph of lower valley well 06507E22B01S.
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Cumulative Acres

Figure 13.
Total farm acreage served by drains.
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Flow, in acre-ft
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Elevation, in ft msl

Figure 16.

Hydrograph of Upper Valley well 04504E13J018S.
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Elevation, in ft msl
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Measured and simulated groundwater levels in selected wells.
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Flow, in acre-ft

Measured and simulated agricultural drain flows.

Figure 32.
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Overview of Orange County Water
District’s Managed Aquifer Recharge
System

Recharge System Tour

Slides Courtesy of Roy Herndon and Adam Hutchinson,
OCWD



Overview of Orange County Water
District’'s Managed Aquifer Recharge
System

Recharge System Tour

Slides Courtesy of Roy Herndon and Adam
Hutchinson, OCWD



The Orange County groundwater basin lies at
the base of the Santa Ana River watershed.
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Over the course of 75 years, the District has
purchased 600 hectares for recharge.
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Basin geology limits the area where
surface MAR can be used.
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(/) 1824484

: Orange Co., CA (Tompson, Carle,

Rosenberg, and Maxwell, 1999)



The Anaheim Lake complex covers 60 hectares
and can recharge SAR, imported and recycled

water.
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Over the past decade, surface water recharge has
averaged 274 million m3 per year from a variety of
sources.
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Outline

e Groundwater fundamentals
— California groundwater occurrence & general background

— Overdraft & negative consequences
* Non-sustainable storage depletion
e Subsidence
* Surface water & ecosystem effects
* Increased energy costs
* Bad water intrusion from aquitards and from depth
e Basin salt imbalance
* Seawater intrusion

— Sustainable yield

e Groundwater myths
— Pumping of “fossil water” is non-sustainable
— Groundwater storage depletion always takes a long time to recover
— Groundwater levels tell us how much groundwater storage is changing
— Quality of most groundwater is degraded
— Good quality groundwater today is likely to stay that way
— Potential myth: climate change will decrease groundwater recharge
e Case studies
— Coachella valley
— Yolo County
— Orange Co.



Confined Aquifer Schematic (from Driscoll, 1986)

- Bedrock recharge zone

Potential energy in confined aquifer
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Figure 5.2, Groundwater exiéts in the underground in two major envirom‘nents: unconfined and confined.

Myth: Old (1,000’s of yrs) groundwater is fossil water

that is not replenished enough to support pumping. o




Groundwater and Surface Water
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